1. 从字典创建Dataframe
> import pandas as pd > dict1 = {'col1':[1,2,5,7],'col2':['a','b','c','d']} > df = pd.DataFrame(dict1) > df col1 col2 0 1 a 1 2 b 2 5 c 3 7 d
2. 从列表创建Dataframe (先把列表转化为字典,再把字典转化为DataFrame)
> lista = [1,2,5,7] > listb = ['a','b','c','d'] > df = pd.DataFrame({'col1':lista,'col2':listb}) > df col1 col2 0 1 a 1 2 b 2 5 c 3 7 d
3. 从列表创建DataFrame,指定data和columns
> a = ['001','zhangsan','M'] > b = ['002','lisi','F'] > c = ['003','wangwu','M'] > df = pandas.DataFrame(data=[a,b,c],columns=['id','name','sex']) > df id name sex 0 001 zhangsan M 1 002 lisi F 2 003 wangwu M
4. 修改列名,从['id','name','sex']修改为['Id','Name','Sex']
> df.columns = ['Id','Name','Sex'] > df Id Name Sex 0 001 zhangsan M 1 002 lisi F 2 003 wangwu M
5. 调整DataFrame列顺序、调整列编号从1开始
https://www.jb51.net/article/163644.htm
6. DataFrame随机生成10行4列int型数据
> import pandas > import numpy > df = pandas.DataFrame(numpy.random.randint(0,100,size=(10, 4)), columns=list('ABCD')) # 0,100指定随机数为0到100之间(包括0,不包括100),size = (10,4)指定数据为10行4列,column指定列名 > df A B C D 0 67 28 37 66 1 21 27 43 37 2 73 54 98 85 3 40 78 4 93 4 99 60 63 16 5 48 46 24 61 6 59 52 62 28 7 20 74 36 64 8 14 13 46 60 9 18 44 70 36
7. 用时间序列做index名
> df # 原本index为自动生成的0~9 A B C D 0 31 25 45 67 1 62 12 61 88 2 79 36 20 97 3 26 57 50 44 4 24 12 50 1 5 4 61 99 62 6 40 47 52 27 7 83 66 71 4 8 58 59 25 62 9 38 81 60 8 > import pandas > dates = pandas.date_range('20180121',periods=10) > dates # 从20180121开始,共10天 DatetimeIndex(['2018-01-21', '2018-01-22', '2018-01-23', '2018-01-24', '2018-01-25', '2018-01-26', '2018-01-27', '2018-01-28', '2018-01-29', '2018-01-30'], dtype='datetime64[ns]', freq='D') > df.index = dates # 将dates赋值给index > df A B C D 2018-01-21 31 25 45 67 2018-01-22 62 12 61 88 2018-01-23 79 36 20 97 2018-01-24 26 57 50 44 2018-01-25 24 12 50 1 2018-01-26 4 61 99 62 2018-01-27 40 47 52 27 2018-01-28 83 66 71 4 2018-01-29 58 59 25 62 2018-01-30 38 81 60 8
8. dataframe 实现类SQL操作
pandas官方文档 Comparison with SQL
https://pandas.pydata.org/pandas-docs/stable/comparison_with_sql.html
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
更新日志
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]